metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jan Moncol,* Milan Gembicky and Phillip Coppens

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA

Correspondence e-mail: moncol@buffalo.edu

Key indicators

Single-crystal X-ray study T = 90 KMean $\sigma(\text{C-C}) = 0.001 \text{ Å}$ R factor = 0.024 wR factor = 0.075Data-to-parameter ratio = 83.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dicarbonylbis(triphenylphosphine)nickel(0): a redetermination at 90 K

The structure of the title compound, $[Ni(C_{18}H_{15}P)_2(CO)_2]$, has been redetermined from high-resolution data collected at 90 K. The crystal structure reveals tetrahedral coordination geometry for nickel, with two triphenylphosphine and two carbonyl ligands. The Ni atom lies on a twofold rotation axis.

Comment

The crystal structure of the title compound, (I), has been published previously (Krüger & Tsay, 1974). In the present study, data were collected at low temperature, using a diffractometer equipped with an APEX2 CCD area detector.

As shown in Fig. 1, the structure of (I) is composed of neutral $[Ni(PPh_3)_2(CO)_2]$ complex molecules. The results show that the coordination around the Ni⁰ atom, which lies on a twofold rotation axis, is distorted tetrahedral, composed of two triphenylphosphine P atoms [Ni-P1 = 2.2167 (1) Å] and two carbonyl C atoms [Ni-C19 = 1.7808 (4) Å]. The Ni⁰ atom assumes a distorted tetrahedral configuration as in a series of other complexes: $[Ni(R_3P)_2(CO)_2]$, where R_3P is tricyclohexylphosphine (Del Pra *et al.*, 1981), diphenyl(2-pyridinyl)-phosphine (Wang *et al.*, 1989), tris(*o*-tolyloxy)phosphine

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I) (50% probability displacement ellipsoids).

Received 8 September 2004 Accepted 29 September 2004 Online 9 October 2004

(Meichel et al., 2002), (4-hydroxybutyl)diphenylphosphine (Reinhard et al., 2003) and 1,3,5-triaza-7-phosphaadamantane (Darensbourg et al., 1999). The geometric parameters of the present structure agree well with those previously reported by Krüger & Tsay (1974), but with significantly improved precision. The precision of the Ni-P1 bond length (0.0001 Å), as well as the mean C–C bond length precision (0.0006 Å) for the low-temperature study, are better than the roomtemperature data (0.001 and 0.004 Å, respectively). Similarly, the mean standard uncertainty for the C-C-C bond angles for the low-temperature data is 0.04°, whereas for the roomtemperature data the mean standard deviation for the C-C-C bond angles is 0.2° .

Experimental

The title compound was obtained from a commercial source (Aldrich Ltd). Crystals suitable for structure determination were grown from a solution in 1,2-dimethoxyethane in a dry-box.

Crystal data

$[Ni(C_{18}H_{15}P)_2(CO)_2]$	$D_x = 1.369 \text{ Mg m}^{-3}$	
$M_r = 639.25$	Mo $K\alpha$ radiation	
Monoclinic, $P2/c$	Cell parameters from 7626	
a = 11.7267 (4) Å	reflections	
b = 8.1512 (2) Å	$\theta = 2.5 - 49.3^{\circ}$	
c = 16.8433 (5) Å	$\mu = 0.76 \text{ mm}^{-1}$	
$\beta = 105.612 (1)^{\circ}$	T = 90 (1) K	
V = 1550.60 (8) Å ³	Needle, colorless	
<i>Z</i> = 2	0.20 \times 0.05 \times 0.04 mm	
Data collection		
Bruker SMART APEX2	16 260 independent reflecti	
diffractometer	13 619 reflections with $I >$	
ω scans	$R_{\rm int} = 0.027$	
Absorption correction: multi-scan	$\theta_{\rm max} = 50.0^{\circ}$	
(SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 24$	
$T_{\rm min} = 0.863, T_{\rm max} = 0.970$	$k = -17 \rightarrow 17$	
99 172 measured reflections	$l = -36 \rightarrow 36$	
Refinement		

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.075$ S = 1.0416 260 reflections 195 parameters H-atom parameters constrained

flections $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0472P)^2]$ + 0.0217P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni-C19	1.7808 (4)	O1-C19	1.1486 (5)
Ni-P1	2.2167 (1)		
C19 ⁱ -Ni-C19	113.47 (3)	C19-Ni-P1	103.849 (14)
C19-Ni-P1i	109.58 (1)	P1 ⁱ -Ni-P1	116.842 (6)

All H atoms were placed in calculated positions (C–H = 0.95 Å) and refined with a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: XL in SHELXTL (Sheldrick, 2000); molecular graphics: XP in SHELXTL; software used to prepare material for publication: enCIFer (Allen et al., 2004).

Financial support of this work by the National Science Foundation (CHE9981864 and CHE0236317) is gratefully acknowledged.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Darensbourg, D. J., Robertson, J. F., Larkin, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473-2481.
- Del Pra, A., Zanotti, G., Pandolfo, L. & Segala, P. (1981). Cryst. Struct. Commun. 10, 7-12.
- Krüger, C. & Tsay, Y.-H. (1974). Cryst. Struct. Commun. 3, 455-458.
- Meichel, E., Stein, Th., Kralik, J., Rheinwald, G. & Lang, H. (2002). J. Organomet. Chem. 649, 191-198.
- Reinhard, R., Soba, P., Rominger, F. & Blumel, J. (2003). Adv. Synth. Catal. 345. 589-602.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Wang, H., Wang, R., Zheng, Z., Wang, X., Zhang, W. & Yang, L. (1989). Chem. J. Chin. Univ. 10, 809-811.