Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jan Moncol,* Milan Gembicky and Phillip Coppens

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA

Correspondence e-mail: moncol@buffalo.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.024$
$w R$ factor $=0.075$
Data-to-parameter ratio $=83.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dicarbonylbis(triphenylphosphine)nickel(0): a redetermination at 90 K

The structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}(\mathrm{CO})_{2}\right]$, has been redetermined from high-resolution data collected at 90 K . The crystal structure reveals tetrahedral coordination geometry for nickel, with two triphenylphosphine and two carbonyl ligands. The Ni atom lies on a twofold rotation axis.

Comment

The crystal structure of the title compound, (I), has been published previously (Krüger \& Tsay, 1974). In the present study, data were collected at low temperature, using a diffractometer equipped with an APEX2 CCD area detector.

$$
\begin{gathered}
\mathrm{Ph}_{3} \mathrm{P} \\
\mathrm{OC} \\
\\
\text { (I) }
\end{gathered}
$$

As shown in Fig. 1, the structure of (I) is composed of neutral $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{2}\right]$ complex molecules. The results show that the coordination around the Ni^{0} atom, which lies on a twofold rotation axis, is distorted tetrahedral, composed of two triphenylphosphine P atoms $[\mathrm{Ni}-\mathrm{P} 1=2.2167$ (1) \AA A and two carbonyl C atoms $\left[\mathrm{Ni}-\mathrm{C} 19=1.7808\right.$ (4) \AA]. The Ni^{o} atom assumes a distorted tetrahedral configuration as in a series of other complexes: $\left[\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2}(\mathrm{CO})_{2}\right]$, where $\mathrm{R}_{3} \mathrm{P}$ is tricyclohexylphosphine (Del Pra et al., 1981), diphenyl(2-pyridinyl)phosphine (Wang et al., 1989), tris(o-tolyloxy)phosphine

Figure 1
View of (I) (50\% probability displacement ellipsoids).

Received 8 September 2004
Accepted 29 September 2004 Online 9 October 2004
(Meichel et al., 2002), (4-hydroxybutyl)diphenylphosphine (Reinhard et al., 2003) and 1,3,5-triaza-7-phosphaadamantane (Darensbourg et al., 1999). The geometric parameters of the present structure agree well with those previously reported by Krüger \& Tsay (1974), but with significantly improved precision. The precision of the $\mathrm{Ni}-\mathrm{P} 1$ bond length $(0.0001 \AA)$, as well as the mean $\mathrm{C}-\mathrm{C}$ bond length precision $(0.0006 \AA)$ for the low-temperature study, are better than the roomtemperature data (0.001 and $0.004 \AA$, respectively). Similarly, the mean standard uncertainty for the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles for the low-temperature data is 0.04°, whereas for the roomtemperature data the mean standard deviation for the $\mathrm{C}-\mathrm{C}-$ C bond angles is 0.2°.

Experimental

The title compound was obtained from a commercial source (Aldrich Ltd). Crystals suitable for structure determination were grown from a solution in 1,2-dimethoxyethane in a dry-box.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}(\mathrm{CO})_{2}\right]$
$M_{r}=639.25$
Monoclinic, $P 2 / c$
$a=11.7267$ (4) \AA
$b=8.1512$ (2) \AA
$c=16.8433(5) \AA$
$\beta=105.612(1)^{\circ}$
$V=1550.60(8) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX2
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.863, T_{\text {max }}=0.970$
99172 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
16260 reflections
195 parameters
H-atom parameters constrained
$D_{x}=1.369 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7626 reflections
$\theta=2.5-49.3^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=90$ (1) K
Needle, colorless
$0.20 \times 0.05 \times 0.04 \mathrm{~mm}$

16260 independent reflections
13619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=50.0^{\circ}$
$h=-25 \rightarrow 24$
$k=-17 \rightarrow 17$
$l=-36 \rightarrow 36$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0472 P)^{2}\right. \\
& \quad+0.0217 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ni}-\mathrm{C} 19$	$1.7808(4)$	$\mathrm{O} 1-\mathrm{C} 19$	$1.1486(5)$
$\mathrm{Ni}-\mathrm{P} 1$	$2.2167(1)$		
$\mathrm{C} 19^{\mathrm{i}}-\mathrm{Ni}-\mathrm{C} 19$	$113.47(3)$	$\mathrm{C} 19-\mathrm{Ni}-\mathrm{P} 1$	$103.849(14)$
$\mathrm{C} 19-\mathrm{Ni}-\mathrm{P} 1^{\mathrm{i}}$	$109.58(1)$	$\mathrm{P}^{\mathrm{i}}-\mathrm{Ni}-\mathrm{P} 1$	$116.842(6)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.
All H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined with a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: XL in SHELXTL (Sheldrick, 2000); molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: enCIFer (Allen et al., 2004).

Financial support of this work by the National Science Foundation (CHE9981864 and CHE0236317) is gratefully acknowledged.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Darensbourg, D. J., Robertson, J. F., Larkin, D. L. \& Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473-2481.
Del Pra, A., Zanotti, G., Pandolfo, L. \& Segala, P. (1981). Cryst. Struct. Соттии. 10, 7-12.
Krüger, C. \& Tsay, Y.-H. (1974). Cryst. Struct. Commun. 3, 455-458.
Meichel, E., Stein, Th., Kralik, J., Rheinwald, G. \& Lang, H. (2002). J. Organomet. Chem. 649, 191-198.
Reinhard, R., Soba, P., Rominger, F. \& Blumel, J. (2003). Adv. Synth. Catal. 345, 589-602.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Wang, H., Wang, R., Zheng, Z., Wang, X., Zhang, W. \& Yang, L. (1989). Chem. J. Chin. Univ. 10, 809-811.

